

Attrition-Resistant Iron-Based Catalyst for F-T SBCRS

Adeyinka A. Adeyiga

DOE-Massie Chair of Excellence
Department of Chemical Engineering, Hampton University, Hampton, VA
23668

University Coal Research / Historically Black Colleges & Universities and Other Minority Institutions Programs Review Meeting
NETL -- Pittsburgh, PA
June 3-4, 2003

Presenter Information

Adeyinka A. Adeyiga

Department of Chemical Engineering
Suite 318, Olin Engineering Building, Hampton
University

Hampton, VA 23668

Phone: (757) 727-5289

Fax: (757) 727-5189

Email: adeyinka.adeyiga@hamptonu.edu

Industrial Collaboration: Süd –Chemie, Inc.

Grant: DE-FG26-01NT41360

Performance Period: September 1, 2001-August 31, 2004

Background

Objective

To develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor.

- Improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha ironbased catalyst synthesized at Hampton University;
- Seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and,
- Investigate the performance in a slurry reactor.

Reactions

$$CO + 2 H_2 \rightarrow -CH_2 - + H_2O$$

 $CO + H_2O \rightarrow CO_2 + H_2$
 $2 CO + H_2 \rightarrow -CH_2 - + CO_2$

Advantages of Iron Catalysts

- Inexpensive
- Specific activity for FT synthesis is high
- Water-gas shift activity
- Convert low H₂/CO ratio syngas

Advantages of Slurry Bubble Column Reactor

- Ability to remove heat and control reaction temperature
- High rate of reaction/productivity

Problem

- Attrition of the iron catalysts in fixed bed reactors
- Attrition of the iron catalysts in downstream filters in slurry bubble column reactors
- Leading to activity decline because of loss of catalyst from the reactors

Remedy

To improve the physical strength of Fe FT catalysts, the spray-drying technique has been used for catalyst preparation without lowering catalyst activity

Catalyst Preparation

- Typical Fe FT catalysts is 100 Fe/5 Cu/4.2 K/x SiO₂
- Prepare a solution containing Fe(NO₃)₃• 9H₂O of appropriate concentration
- Prepare a solution containing CU (NO₃)₂ 2.5 H₂O of appropriate concentration
- Take appropriate concentration of Si(OC₂H₅)₄
- Precipitation is carried using ammonium hydroxide (NH₄OH)
- Aqueous potassium in form of KHCO₃ is added to the slurry
- Slurry is spray dried at 250°C in Niro spray drier
- The spray dried catalyst is then calcined at 300°C for five hours in a muffle furnace
- The calcined catalysts were sieved between 38 and 90 μm

Niro Spray Drier

Catalyst Characterization Methods Employed

- BET
- Mercury porosimetry
- H₂-TPR
- SEM
- Metals analysis by AA
- Jet Cup

SEM Micrograph of Reduced Iron Catalyst

Hydrogen TPR of Iron Catalyst

SEM Micrographs of Fe/P(0) and Fe/P(3) Before and After Attrition

Before Attrition

After Attrition

SEM Micrographs of Fe/P(5) and Fe/P(8) Before and After Attrition

Before Attrition

After Attrition

SEM Micrographs of Fe/P(10) and Fe/P(12) Before and After Attrition

Before Attrition

After Attrition

EDXS Results for the Cross Section of a Typical Fe/P(5) Particle

SEM Micrographs of Typical SiO₂ Structures After Acid Leaching [Fe/P(12)]

(A) Typical structure

(B) Particle with interior

Jet Cup Attrition Test

- Attrition tests were conducted using a jet cup system
- In the jet cup test, 5g of each calcined catalyst sample was evaluated for attrition resistance under identical testing conditions using an air jet flow of 15 L/min with a relative humidity of 60 + 5% at room temperature and atmospheric pressure
- After 1 hr. time-on-stream, the air jet flow was stopped, and the weight of fines collected by the downstream filter was determined
- The "weight percentage of fines lost" was calculated and used as one of the attrition indices
- The particle size distribution before and after attrition testing was determined with a Leeds & Northup Microtrac laser particle size analyzer and used to calculate the "net change in volume moment", the other attrition index used in our attrition studies. The volume moment is a measure of the average particle size.

Jet cup attrition resistance test results

Catalysts	Attrition, wt %
Fresh (calcined)	4.8
CO pretreated	3.06
H ₂ /CO pretreated	3.85
H ₂ pretreated	4.02

Attrition Results (Jet Cup)

Attrition Test of Fe FT Catalysts

Jet Cup Attrition Results

Catalyst	Total SiO ₂ Concentration (wt%)	Fines Lost (wt%)	Net Change in Volume Moment (5)
Fe/P(0)	0.0	3.2	6.0
Fe/P(3)	2.7	6.4	18.4
Fe/P(5)	5.2	7.5	23.4
Fe/P(8)	7.6	8.6	27.1
Fe/P(10)	9.9	9.3	30.1
Fe/P(12)	12.1	7.7	27.8
Fe/P(16)	16.1	24.5	
Fe/P(20)	19.8	29.9	

- (a) Wt% fines = weight of fines collected/weight of total catalyst recovered x 100%
- (b) Error = $\pm 10\%$ of the value measured.
- (c) Net change in volume moment was determined with reference to the particle size distribution before attrition testing.
- (d) Net change in volume moment (VM) = [(VM of sample after attrition test VM of sample before test) / VM of sample before test] x 100%.
- (e) Error = $\pm 5\%$ of the value measured.

Jet Cup Attrition Results

Weight Percentage of Fines Lost vs. Total Concentration of SiO_2 for Different Series of Spray-Dried Fe FT Catalysts

B refers to binder SiO_2 ; P refers to precipitated SiO_2 ; x and y refer to the amount of binder and precipitated SiO_2 added, respectively.

Weight Percentage of Fines Lost vs. Average Particle Density of Calcined Fe/P(y), Fe/B(x), and FE/P(y)/B(10) Catalysts

BET Surface Area and Pore Volume of the Iron Catalysts Studied

Table 2. BET Surface Area and Pore Volume of the Iron Catalysts Studied.

	BET Surface Area (m²/g) (a)		m²/g) (a) Pore Volume (cm³/g) (b)	
Catalyst	Fresh	Attritted	Fresh	Attritted
Fe/P(0)	24	23	0.08	0.08
Fe/P(3)	69	63	0.12	0.11
Fe/P(5)	83	115	0.12	0.16
Fe/P(8)	48	69	0.11	0.14
Fe/P(10)	41	44	0.11	0.11
Fe/P(12)	76	84	0.11	0.12

- (a) Error = $\pm 5\%$ of the value measured.
- (b) Error $\equiv \pm 10\%$ of the value measured.

Macro Pore Volume and Particle Density of Selected Iron Catalysts

Catalyst	Macro Pore volume (cm³/g) (s)	Particle Density (g/cm³) ^(b)
Fe/P(0)	0.25	1.64
Fe/P(10)	0.26	1.40
Fe/P(12)	0.24	1.44
Fe/P(16)	-	0.81
Fe/P(20)	1	0.79

- (a) Measured using mercury porosimetry, error $\equiv \pm 10\%$ of the valued measured.
- (b) Determined using low-pressure mercury displacement, error = $\pm 5\%$ of the value measured.

FT Reaction Fixed-Bed Test Apparatus

Tubular Fixed Bed (ARGE) Reactor

Experimental Conditions

Activation

0.1 MPa, 280 °C, CO, H₂, CO+H₂, 16 h

Reaction

 H_2/CO ratio 0.67/1

Space velocity 2.0 NL/g cat/h

Temperature 270 °C

Pressure 1.48 MPa

Variation of synthesis gas conversion with time on stream after different pretreatments

HU CSTR Set Up

Slurry Bubble Column Reactor

CSTR Experimental Condition

■ The conditions for testing are as follows:

CSTR Stirrer Speed (rev/min)	500
Temperature (°C)	260°C
Pressure (Mpa)	2.0
Space velocity (NL/gcat/h)	2.0
Syngas Composition	H ₂ /CO-0.67
Activation	$0.1 \text{ Mpa}, H_2/CO = 0.67,$
	280°C for 12 h

CSTR Results

Summary

- Active iron catalysts prepared in 50+ gram quantities by spray drying
- CO conversion >95% achieved
- Silica content around 12 wt% showed the lowest attrition resistance
- The activity of the syngas (H₂/CO = 0.67) pretreated catalysts was the highest among all the pretreatment procedure used

Future Work

- Continue to improve catalyst performance
- Testing of the best catalysts in a CSTR

Acknowledgment

- US Department of Energy: DE-FG26-01NT41360
- DOE Project Officer: Dr. Benjamine C.B. Hsieh
- Hampton University:
 - Staff: Dr. L. Hu, Mrs. E. Miamee, Mrs. B. Simandl
 - Students: K. Bradley, T. Hicks, M. Williams
- Clemson University Dr. J.G. Goodwin
- Texas A&M University Dr. Dragomir B. Bukur
- University of Kentucky Dr. Burton Davies
 Center for Applied Energy Research
- Conoco Inc. Dr. K. Jothimurugesan
- Sud-Chemie